3.1.77 \(\int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c-c \sec (e+f x))^{5/2}} \, dx\) [77]

Optimal. Leaf size=117 \[ -\frac {3 a^2 \text {ArcTan}\left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{4 \sqrt {2} c^{5/2} f}-\frac {a^2 \tan (e+f x)}{f (c-c \sec (e+f x))^{5/2}}+\frac {5 a^2 \tan (e+f x)}{4 c f (c-c \sec (e+f x))^{3/2}} \]

[Out]

-3/8*a^2*arctan(1/2*c^(1/2)*tan(f*x+e)*2^(1/2)/(c-c*sec(f*x+e))^(1/2))/c^(5/2)/f*2^(1/2)-a^2*tan(f*x+e)/f/(c-c
*sec(f*x+e))^(5/2)+5/4*a^2*tan(f*x+e)/c/f/(c-c*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 130, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {4042, 3880, 209} \begin {gather*} -\frac {3 a^2 \text {ArcTan}\left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{4 \sqrt {2} c^{5/2} f}+\frac {3 a^2 \tan (e+f x)}{4 c f (c-c \sec (e+f x))^{3/2}}-\frac {\tan (e+f x) \left (a^2 \sec (e+f x)+a^2\right )}{2 f (c-c \sec (e+f x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(a + a*Sec[e + f*x])^2)/(c - c*Sec[e + f*x])^(5/2),x]

[Out]

(-3*a^2*ArcTan[(Sqrt[c]*Tan[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sec[e + f*x]])])/(4*Sqrt[2]*c^(5/2)*f) - ((a^2 + a^2
*Sec[e + f*x])*Tan[e + f*x])/(2*f*(c - c*Sec[e + f*x])^(5/2)) + (3*a^2*Tan[e + f*x])/(4*c*f*(c - c*Sec[e + f*x
])^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4042

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[2*a*c*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m +
1))), x] - Dist[d*((2*n - 1)/(b*(2*m + 1))), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x]
)^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] && L
tQ[m, -2^(-1)] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c-c \sec (e+f x))^{5/2}} \, dx &=-\frac {\left (a^2+a^2 \sec (e+f x)\right ) \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}-\frac {(3 a) \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{3/2}} \, dx}{4 c}\\ &=-\frac {\left (a^2+a^2 \sec (e+f x)\right ) \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}+\frac {3 a^2 \tan (e+f x)}{4 c f (c-c \sec (e+f x))^{3/2}}+\frac {\left (3 a^2\right ) \int \frac {\sec (e+f x)}{\sqrt {c-c \sec (e+f x)}} \, dx}{8 c^2}\\ &=-\frac {\left (a^2+a^2 \sec (e+f x)\right ) \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}+\frac {3 a^2 \tan (e+f x)}{4 c f (c-c \sec (e+f x))^{3/2}}-\frac {\left (3 a^2\right ) \text {Subst}\left (\int \frac {1}{2 c+x^2} \, dx,x,\frac {c \tan (e+f x)}{\sqrt {c-c \sec (e+f x)}}\right )}{4 c^2 f}\\ &=-\frac {3 a^2 \tan ^{-1}\left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{4 \sqrt {2} c^{5/2} f}-\frac {\left (a^2+a^2 \sec (e+f x)\right ) \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}+\frac {3 a^2 \tan (e+f x)}{4 c f (c-c \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 2.49, size = 359, normalized size = 3.07 \begin {gather*} -\frac {a^2 e^{-\frac {1}{2} i (e+f x)} \csc \left (\frac {e}{2}\right ) \sec ^3\left (\frac {1}{2} (e+f x)\right ) \sqrt {\sec (e+f x)} (1+\sec (e+f x))^2 \left (\frac {e^{-\frac {3 i e}{2}} \left (-1+e^{i e}\right ) \left (\cos \left (\frac {f x}{2}\right )+i \sin \left (\frac {f x}{2}\right )\right ) \left (-9 i e^{i e} \left (1+e^{i e}\right ) \cos \left (\frac {f x}{2}\right )+i \left (1+e^{3 i e}\right ) \cos \left (\frac {3 f x}{2}\right )-9 e^{i e} \sin \left (\frac {f x}{2}\right )+9 e^{2 i e} \sin \left (\frac {f x}{2}\right )+\sin \left (\frac {3 f x}{2}\right )-e^{3 i e} \sin \left (\frac {3 f x}{2}\right )\right )}{16 \sqrt {\sec (e+f x)}}+3 \sqrt {\frac {e^{i (e+f x)}}{1+e^{2 i (e+f x)}}} \sqrt {1+e^{2 i (e+f x)}} \tanh ^{-1}\left (\frac {1+e^{i (e+f x)}}{\sqrt {2} \sqrt {1+e^{2 i (e+f x)}}}\right ) \sin \left (\frac {e}{2}\right ) \sin ^4\left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )}{4 c^2 f (-1+\sec (e+f x))^2 \sqrt {c-c \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x])^2)/(c - c*Sec[e + f*x])^(5/2),x]

[Out]

-1/4*(a^2*Csc[e/2]*Sec[(e + f*x)/2]^3*Sqrt[Sec[e + f*x]]*(1 + Sec[e + f*x])^2*(((-1 + E^(I*e))*(Cos[(f*x)/2] +
 I*Sin[(f*x)/2])*((-9*I)*E^(I*e)*(1 + E^(I*e))*Cos[(f*x)/2] + I*(1 + E^((3*I)*e))*Cos[(3*f*x)/2] - 9*E^(I*e)*S
in[(f*x)/2] + 9*E^((2*I)*e)*Sin[(f*x)/2] + Sin[(3*f*x)/2] - E^((3*I)*e)*Sin[(3*f*x)/2]))/(16*E^(((3*I)/2)*e)*S
qrt[Sec[e + f*x]]) + 3*Sqrt[E^(I*(e + f*x))/(1 + E^((2*I)*(e + f*x)))]*Sqrt[1 + E^((2*I)*(e + f*x))]*ArcTanh[(
1 + E^(I*(e + f*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(e + f*x))])]*Sin[e/2]*Sin[(e + f*x)/2]^4)*Tan[(e + f*x)/2])/(
c^2*E^((I/2)*(e + f*x))*f*(-1 + Sec[e + f*x])^2*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(229\) vs. \(2(100)=200\).
time = 2.43, size = 230, normalized size = 1.97

method result size
default \(-\frac {a^{2} \left (-1+\cos \left (f x +e \right )\right )^{3} \left (\left (\cos ^{2}\left (f x +e \right )\right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+3 \left (\cos ^{2}\left (f x +e \right )\right ) \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right )-4 \cos \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-6 \cos \left (f x +e \right ) \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right )-5 \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+3 \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right )\right )}{f \left (\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}\right )^{\frac {5}{2}} \sin \left (f x +e \right )^{5} \left (-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}\right )^{\frac {5}{2}}}\) \(230\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-a^2/f*(-1+cos(f*x+e))^3*(cos(f*x+e)^2*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)+3*cos(f*x+e)^2*arctan(1/(-2*cos(f*
x+e)/(cos(f*x+e)+1))^(1/2))-4*cos(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-6*cos(f*x+e)*arctan(1/(-2*cos(f*
x+e)/(cos(f*x+e)+1))^(1/2))-5*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)+3*arctan(1/(-2*cos(f*x+e)/(cos(f*x+e)+1))^(
1/2)))/(c*(-1+cos(f*x+e))/cos(f*x+e))^(5/2)/sin(f*x+e)^5/(-2*cos(f*x+e)/(cos(f*x+e)+1))^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(f*x + e) + a)^2*sec(f*x + e)/(-c*sec(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

Fricas [A]
time = 3.24, size = 463, normalized size = 3.96 \begin {gather*} \left [-\frac {3 \, \sqrt {2} {\left (a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \cos \left (f x + e\right ) + a^{2}\right )} \sqrt {-c} \log \left (\frac {2 \, \sqrt {2} {\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt {-c} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} + {\left (3 \, c \cos \left (f x + e\right ) + c\right )} \sin \left (f x + e\right )}{{\left (\cos \left (f x + e\right ) - 1\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + 4 \, {\left (a^{2} \cos \left (f x + e\right )^{3} - 4 \, a^{2} \cos \left (f x + e\right )^{2} - 5 \, a^{2} \cos \left (f x + e\right )\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{16 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) + c^{3} f\right )} \sin \left (f x + e\right )}, \frac {3 \, \sqrt {2} {\left (a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \cos \left (f x + e\right ) + a^{2}\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {c} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 2 \, {\left (a^{2} \cos \left (f x + e\right )^{3} - 4 \, a^{2} \cos \left (f x + e\right )^{2} - 5 \, a^{2} \cos \left (f x + e\right )\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{8 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) + c^{3} f\right )} \sin \left (f x + e\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

[-1/16*(3*sqrt(2)*(a^2*cos(f*x + e)^2 - 2*a^2*cos(f*x + e) + a^2)*sqrt(-c)*log((2*sqrt(2)*(cos(f*x + e)^2 + co
s(f*x + e))*sqrt(-c)*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)) + (3*c*cos(f*x + e) + c)*sin(f*x + e))/((cos(f*x
+ e) - 1)*sin(f*x + e)))*sin(f*x + e) + 4*(a^2*cos(f*x + e)^3 - 4*a^2*cos(f*x + e)^2 - 5*a^2*cos(f*x + e))*sqr
t((c*cos(f*x + e) - c)/cos(f*x + e)))/((c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) + c^3*f)*sin(f*x + e)), 1/
8*(3*sqrt(2)*(a^2*cos(f*x + e)^2 - 2*a^2*cos(f*x + e) + a^2)*sqrt(c)*arctan(sqrt(2)*sqrt((c*cos(f*x + e) - c)/
cos(f*x + e))*cos(f*x + e)/(sqrt(c)*sin(f*x + e)))*sin(f*x + e) - 2*(a^2*cos(f*x + e)^3 - 4*a^2*cos(f*x + e)^2
 - 5*a^2*cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)))/((c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e)
+ c^3*f)*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{2} \left (\int \frac {\sec {\left (e + f x \right )}}{c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec {\left (e + f x \right )} + c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx + \int \frac {2 \sec ^{2}{\left (e + f x \right )}}{c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec {\left (e + f x \right )} + c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx + \int \frac {\sec ^{3}{\left (e + f x \right )}}{c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec {\left (e + f x \right )} + c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**2/(c-c*sec(f*x+e))**(5/2),x)

[Out]

a**2*(Integral(sec(e + f*x)/(c**2*sqrt(-c*sec(e + f*x) + c)*sec(e + f*x)**2 - 2*c**2*sqrt(-c*sec(e + f*x) + c)
*sec(e + f*x) + c**2*sqrt(-c*sec(e + f*x) + c)), x) + Integral(2*sec(e + f*x)**2/(c**2*sqrt(-c*sec(e + f*x) +
c)*sec(e + f*x)**2 - 2*c**2*sqrt(-c*sec(e + f*x) + c)*sec(e + f*x) + c**2*sqrt(-c*sec(e + f*x) + c)), x) + Int
egral(sec(e + f*x)**3/(c**2*sqrt(-c*sec(e + f*x) + c)*sec(e + f*x)**2 - 2*c**2*sqrt(-c*sec(e + f*x) + c)*sec(e
 + f*x) + c**2*sqrt(-c*sec(e + f*x) + c)), x))

________________________________________________________________________________________

Giac [A]
time = 1.39, size = 106, normalized size = 0.91 \begin {gather*} \frac {\sqrt {2} {\left (3 \, \sqrt {c} \arctan \left (\frac {\sqrt {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c}}{\sqrt {c}}\right ) + \frac {3 \, {\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c\right )}^{\frac {3}{2}} c + 5 \, \sqrt {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c} c^{2}}{c^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4}}\right )} a^{2}}{8 \, c^{3} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^(5/2),x, algorithm="giac")

[Out]

1/8*sqrt(2)*(3*sqrt(c)*arctan(sqrt(c*tan(1/2*f*x + 1/2*e)^2 - c)/sqrt(c)) + (3*(c*tan(1/2*f*x + 1/2*e)^2 - c)^
(3/2)*c + 5*sqrt(c*tan(1/2*f*x + 1/2*e)^2 - c)*c^2)/(c^2*tan(1/2*f*x + 1/2*e)^4))*a^2/(c^3*f)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^2}{\cos \left (e+f\,x\right )\,{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^2/(cos(e + f*x)*(c - c/cos(e + f*x))^(5/2)),x)

[Out]

int((a + a/cos(e + f*x))^2/(cos(e + f*x)*(c - c/cos(e + f*x))^(5/2)), x)

________________________________________________________________________________________